<u>The MRC Regional Stakeholder Forum</u> 14th – 15th December 2017 Vientiane, Lao PDR

MRC Council Study - Climate Change Impacts

Outline of Presentation

- **1.** Climate Change scenarios and dataset
- 2. Climate Change impact assessment approach
- **3.** Result of CC impact
 - > Hydrology
 - ➤Sediment
 - > Agriculture
 - ➢ Bio-resources
 - ≻Socio-economic
- 4. Conclusions and Key Messages

1. Background

Scenarios

- 1. Climate scenarios: represent plausible future climate conditions of the LMB.
- 2. The selected CC scenarios: cover the range of CC projections produced
- 3. The number of selected scenarios: restricted to a minimum necessary to meet with time and resources constraints. 'Mainstreamed' in all subscenarios +M3CC.

Patterns

3 Scenarios 2040 using latest information IPCC all warmer but rainfall changes varies

i) Seasonal – wetter wet season drier dry
 ii) C2 Wetter Overall iii) C3 Drier Overall

2. Methodology

Models

- 1. Simulate base and future conditions over 24 years for each scenario
- 2. Use Hydrology, Water Resource and Hydraulic Models. Monthly change factors
- 3. Outputs Flows, Water Levels, Sediment, Nitrogen, Phosphorus at over 7000 pts

Impact Tools

- 1. Simulate changes in agriculture, fisheries
- 2. Biological resource assessment
- 3. Social and Economic changes at household and macro level

Integrate models and impact tools to show how changes in all 6 water sectors change with 3 Climate Scenarios by 2040

Social-Environment-Economic

IMPACTS

- Impacts in Hydropower and Agriculture significant especially for drier scenario C3 incuding increasing flow demands (reported in sector presentations)
- Drier climatic conditions reduce flooding thus also increase fish losses by ca 15%.
- Flood Protection 'benefit' of upstream dams reversed for C1 and C2
- Extreme events for flood and drought worsened with lower flows in some key months even with hydropower releases and higher flood peaks giving high extreme event damages.

Example Results - Flows

Changes in Averages – Dry season Increases and wet season reduction

Example Results – Flows Kratie vs Tan Chau in Mekong Delta

Kratie	Dev. 2020	Dev. 2040	Dev. 2040CC	C2	C3	TanChau	Dev. 2020	Dev. 2040	Dev. 2040CC	C2	C3
Dec	25.9	40.8	24.3	26.6	15.0	Dec	9.8	21.1	8.4	7.9	-6.4
Jan	39.2	52.7	41.6	42.0	33.1	Jan	13.2	25.9	14.0	24.8	9.1
Feb	43.6	54.3	46.4	47.3	37.3	Feb	15.5	26.7	17.5	23.7	6.8
Mar	39.5	44.7	37.6	38.9	24.6	Mar	31.6	48.4	30.6	20.7	-1.9
Apr	23.9	21.0	21.3	24.3	10.2	Apr	30.5	40.9	31.1	-15.5	-39.0
May	-9.5	-28.9	-20.5	-17.3	-24.8	May	2.5	0.9	-0.3	-42.1	-47.0
Jun	-16.4	-34.2	21.7	-17.7	-28.3	Jun	-10.3	-26.8	-12.4	-21.5	-33.0
Jul	-13.2	-25.3	-17.6	-20.3	-28.3	Jul	-15.2	-31.2	-22.7	-22.8	-34.0
Aug	-6.8	-11.7	-8.0	-8.3	-18.4	Aug	-6.1	-18.6	-8.8	-9.6	-24.4
Sep	-2.7	2.0	-2.1	7.5	-9.4	Sep	-4.9	-6.0	-6.1	-2.8	-14.7
Oct	0.7	26.8	0.9	8.8	-10.5	Oct	-4.1	0.3	-4.7	-0.1	-12.3
Nov	8.9	41.8	8.5	i 11.0	-4.9	Nov	-1.9	10.4	-3.6	2.5	-12.5
Wetseason	-5.4	-2.5	-6.7	-3.0	-16.4	Wetseason	-6.4	-9.8	-8.9	-7.1	-19.9
Dry Season	22.6	25.1	19.7	21.7	11.2	Dry Season	14.4	25.0	14.1	7.7	-7.7

Changes in Averages : Dry season Increases and wet season reduces **BUT Tonle Sap Lake impact for DRY SEASON flow maintenance is reduced**

Example Results - Floods

Scenario	Annual Flood	Chiang Saen	Luang Prabab	Nong Khai	Mukdahan	Pakse	Stung Treng
EDS	Mean	9,651	15,902	19,282	31,382	38,183	45,843
M2	Mean	9,158	14,932	18,069	29,808	36,713	43,588
МЗ (NoCC	Mean	9,158	13,879	17,372	28,972	36,463	43,622
M3 (CC)	Mean	10,252	15,439	20,356	31,800	39,683	46,734
EDS	Max	13,668	24,882	25,434	38,042	48,119	62,581
M2	Max	12,312	24,559	25,183	37,221	47,814	61,466
МЗ (NoCC	Max	12,315	20,697	21,295	36,395	45,569	62,351
M3 (CC)	Max	21,913	27,419	44,696	51,515	60,997	69,770

'Normal' Floods reduced by upstream dams – though climate change increases again. BUT of more extreme floods dams DO NOT reduce in lower part AND Climate Change increases further.

Example Results

– Sediments and Channel Change

Bio Resource Assessment

Social Impacts – Food Security

Reduction in food surplus by zone.

(see also Irrigation and Agriculture presentation)

Driest Scenaric Worst (C3)

Effect of Climate Change on Food Sec	urity												
Zone	Food	M3	СС	C2	C3	СС	C2	С3	~~~~ 0	HI Scenario	Rice	Fish	IINA
		Surplus A	bove Self S	ufficiency	(Average)	Change in	Surplus		MYANMAR	М1-М2	6%	-32%	2 - R
Zone 4 C Cambodia Kratie to Viet Nar	n Fish	34%	34%	34%	32%	0%	0%	-2%	52		160/	120/	a.
	Rice	58%	63%	57%	57%	5%	-1%	-1%	200		10%	-45%	
Zone 5 A Cambodia-Tonle Sap river	Fish	5%	10%	14%	5%	5%	9%	0%	10-	📕 м1-мзсс	13%	-40%	
	Rice	45%	53%	47%	47%	8%	2%	2%	00	}	- Solo	(È.
Zone 5 B Cambodia Tonle Sap lake	Fish	57%	53%	58%	32%	-4%	1%	-25%		/	Ser for the	1	
	Rice	88%	89%	88%	88%	1%	0%	0%		19 7	> Jonet &	λ	
Zone 2-Main – Lao PDR	Fish	-1%	9%	18%	8%	10%	19%	9%		m	()L	- M	
	Rice	43%	38%	38%	36%	-5%	-5%	-7%	1	° { 🦻	> Zones	1 AS	-
Zone 3-Main - Lao PDR	Fish	11%	14%	20%	12%	3%	9%	1%	Гт	HAILAND	YON Y	and the second	and a
	Rice	83%	83%	82%	82%	0%	-1%	-1%		100	uch.	26 \$ 5	
Zone 2 B-Upper Thailand	Fish	43%	42%	44%	41%	-1%	1%	-2%		3		2	my
	Rice	86%	85%	85%	84%	-1%	-1%	-2%		him	Jumining	Jet in	M
Zone 2 C-Lower Thailand	Fish	84%	83%	83%	83%	-1%	-1%	-1%		C	САМВОДІА		5
	Rice	56%	54%	54%	50%	-2%	-2%	-6%	35	3 22	Zone 5	Ent	* 1
Zone 3 B Thailand-Mainstream	Fish	85%	84%	84%	84%	-1%	-1%	-1%	Legend	the for		Zone 4	Bar
	Rice	64%	62%	62%	59%	-2%	-2%	-5%	SIMVA Zones	Pul.	m North	min	Lor
Zone 3 C Thailand-Songkhram	Fish	84%	84%	84%	82%	0%	0%	-2%	Zone 2 Zone 3	4	· &	25	
	Rice	74%	72%	72%	69%	-2%	-2%	-5%	Zone 4		6.2.36	Tom 6	5
Zone 6 A VietNam Delta - freshwater	Fish	61%	63%	64%	62%	2%	3%	1%	Zone 6		"They	Zonelo	No Seo
	Rice	63%	64%	62%	63%	1%	-1%	0%	River/water body			South C	p.
Zone 6 B VietNam Delta - saline	Fish	55%	62%	63%	60%	7%	8%	5%	Country boundary UNIT boundary)s	2	ł
	Rice	51%	52%	51%	51%	1%	0%	0%			1 miles	A 1-1	4 0

Macroeconomic Impact		Cambodia	Lao PDR	Thailand	Vietnam	Total LMB
· 2010 CDD Drojactions	M1 Trend	48.3	39.2	79.8	82.3	249.6
• 2040 GDP Projections	M2	41.8	35.1	73.7	82.7	233.3
	M3 (No CC)	39.6	30.2	68.9	82.5	221.2
	МЗСС	38.5	30.3	70.4	81.3	220.5
	C2 (Wet)	36.3	30	69.6	78.9	214.8
	C3 (Dry)	36.2	29.9	69.9	78.7	214.7
		GDP Proje	ctions (ave	rage) for 2	040 in cons	stant 2017
		Cambodia	Lao PDR	Thailand	Vietnam	Total LMB
		Average	Average	Average	Average	Average
	МЗСС	3%	0%	-2%	1%	0%
	C2 (Wet)	8%	1%	-1%	4%	3%
	C3 (Drv)	9%	1%	-1%	5%	3%

(--)/

% Reduction in GDP Projections for 2040 Due to Climate Change

SUMMARY & KEY FINDINGS

- Climate change will likely amplify negative impacts.
- Climate change poses a significant risk to both food security and GDP growth, particularly if predicted drier conditions materialise.
- Drier climatic conditions reduce hydropower benefits by up to \$2.2 billion in net present value and increase fish losses by ca 15%.
- The combined effects of over-investment in agriculture and hydropower and more severe climate change could compromise the prospects of lower Mekong basin countries achieving or sustaining lower or middle income status.
- Adaptation to climate change needs to take account of planned upstream developments and use climate financing opportunities (see MASAP).

Thank you

