

Objective

- To illustrate how the DSS reacts to hypothetical scenarios
- To test the response curve under extreme conditions (floods and droughts)
- To adjust individual response curve, if necessary

Calibration scenarios									
Scenario	Description	Prediction							
CS1	High dry season flow, low wet season flow	Relative increase							
CS2	6 dry years, followed by 6 wet years	fluctuation							
CS3	A shortened wet season	Severe effect							
CS4	Sediment supply at 75% of Preliminary Reference	Relative decline							
CS5	Migration blocked between FA1 and FA2 ONLY	Relative decline							
CS7	Extreme dry year (1992 – 10%) repeated for whole sequence	Severe effect							
CS8	Migration blocked between FA4 and 5 ONLY	Relative decline							
CS9	Migration blocked between FA1 and 2 <u>AND</u> between FA4 and 5	Relative decline							
CS10	Sediment supply at 25% of Preliminary Reference	Relative decline							

Preliminary results: calibration scenarios

Ranid at FA3:

- Ranid links
 - Dry duration
 - Wet season onset
 - Wet season duration
 - Sediment concentration
 - Average channel velocity
 - Biomass riparian vegetation
 - Biomass algae

CS3: short wet season duration cause slightly decrease in abundance of Ranids

CS7: extreme dry year cause severe decline of Ranids' abundance

Preliminary results: calibration scenarios

Aquatic serpent at FA3

- Links
 - Flood volume in flooding season
 - Wet season average channel velocity
 - Biomass riparian vegetation
 - Fish Biomass

- CS1: low increase (33%)
- CS3 & CS7: sharply decrease (-41% and -52% relative to reference)
- CS9: slight decrease (-18% fish biomass)

Preliminary results: calibration scenarios

Aquatic turtle at FA3:

- Aquatic turtle links
 - Wet duration
 - Erosion
 - Exposed sandy habitat in the dry season
 - Extent of grassland vegetation
 - Fish biomass

CS3: short wet season duration cause dramatic decrease in abundance of Aquatic turtle CS7: extreme dry year cause

CS7: extreme dry year cause severe decline of Aquatic turle's abundance

CS10: less sediment cause -40% decrease in aquatic turtle relative to reference

Preliminary results: calibration scenarios

Semi-Aquatic turtle at FA3:

- Aquatic turtle links
 - Wet duration
 - Dry max. rate of change
 - Dry max channel depth
 - Wet season duration
 - Erosion
 - Extent riverbank vegetation

 CS1: High dry season flow & low wet season flow cause severe effect on semi-aquatic turtle

Preliminary results: calibration scenarios

Reptiles for human use at FA3:

- Links
 - Flood volume
 - Wet season maximum floodplain depth

- CS2: big fluctuation in amount of reptiles that are available for human exploitation (increase 17%)
- CS7: it predicted a decline in amount of reptiles (-25%)

Preliminary results: calibration scenarios

<u>Species richness of Reptiles</u> <u>at FA3:</u>

- Links
 - Wet season onset
 - Wet max rate of change
 - Erosion
 - Biomass riparian vegetation
 - Fish biomass

- CS2: it showed a fluctuation in species richness of reptiles, general trend is deline (-11%)
- CS10: it predicted a decline in number of reptile species (-18%)

Calibration results

Percentage change from reference for every indicators

	Calibration Scenarios									
Indicators		CS2	cs3	CS4	CS5	CS7	cs8	683	CS10	
Discipline : Herpetofauna										
Ranid	-13.1	-9.2	-3.3	3.2	0.8	-34.5	0.8	0.8	-10.0	
Aquatic serpents		-7.1	-41.7	-6.8	-3.0	-52.8	-18.5	-18.5	-8.9	
Aquatic Turtles		-32.4	-80.7	-21.4	-8.1	-77.9	-28.7	-28.7	-47.7	
Semi-aquatic Turtles		-18.6	-32.2	-2.4	2.2	-37.7	2.2	2.2	-12.6	
Amphibians-human use	0.5	-1.0	-7.3	0.5	0.5	-8.5	0.5	0.5	0.5	
Aquatic/semi-aqu reptiles-human use	-13.8	17.2	-25.6	2.6	2.7	-38.1	2.7	2.7	2.6	
Species richness of riparian/FP amphibians		-11.2	11.2	2.8	2.7	0.8	2.7	2.7	-18.1	
Species richness of riparian/FP reptiles		-35.9	-11.3	-23.2	-8.1	-16.6	-23.1	-23.1	-49.8	

Herpetofauna integrity for all scenarios and sites

 CS3 (short wet season) and CS7 (extreme dry) showed the largest relative effects on Herptiles

